Combinatorics, 2016 Fall, USTC

Week 12, November 24

Ramsey's Theorem

Recall:

- $R(s,t) \le {s+t-2 \choose s-1}$, $s.t \ge 2$.
- $R(s,t) \le R(s-1,t) + R(s,t-1)$.

Theorem 1. If for some (s,t), the numbers R(s-1,t) and R(s,t-1) are even, then

$$R(s,t) \le R(s-1,t) + R(s,t-1) - 1.$$

Proof. Let n = R(s-1,t) + R(s,t-1) - 1. So n is odd. Consider any 2-edge-coloring of K_n . For any vertex x, define $Bx = \{y : xy \text{ is blue.}\}$ and $Rx = \{y : xy \text{ is red.}\}$.

If $\exists v \text{ s.t. } |Bv| \geq R(s-1,t)$ or $|Rv| \geq R(s,t-1)$, then by the definition of Ramsey number, we can find a blue K_s or a red K_t . Thus, we may assume, for any vertex v, $|Bv| \leq R(s-1,t) - 1$ and $|Rv| \leq R(s,t-1) - 1$.

But $n-1=|Bv|+|Rv| \leq R(s-1,t)+R(s,t-1)-2=n-1$. This implies that for each v, |Bv|=R(s-1,t)-1 is odd. This shows that the graph G consisting of all blue edges has odd number of vertices, where each vertex is of odd degree in G. But this contradicts the Handshaking Lemma.

Definition 2. For any $k \geq 2$ and integers $s_1, s_2, ..., s_k \geq 2$, the Ramsey number $R_k(s_1, s_2, ..., s_k)$ is the least integer N such that any k-edge-coloring of K_N has a clique K_{s_i} in color i, for some $i \in [k]$.

Homework. $R_k(s_1, s_2, ..., s_k) < +\infty$.

Theorem 3 (Schur's Theorem). For $k \geq 2$, there exists some integer N = N(k) such that any coloring $c : [N] \rightarrow [k]$ contains $x, y, z \in [N]$ satisfying that c(x) = c(y) = c(z) and x + y = z.

Proof. Let $N = R_k(3, 3, ..., 3)$. Define a k-dege-coloring of K_N . From the coloring c as following: $\forall i, j \in [N]$, define the color of ij to be c(|i-j|). By the choice of N, we see that there exists a monochromatic K_3 , say ijl, where i < j < l. Let x = j - i, y = l - j, and z = l - i. Then c(x) = c(y) = c(z) and x + y = z.

Using this theorem, Schur proved that Fermat last Theorem holds in \mathbb{Z}_p for sufficiently large prime p.

Theorem 4. For any integer $m \ge 1$, there is a prime p(m) s.t. for any prime $p \ge p(m)$, $x^m + y^m = z^m \pmod{p}$ has a nontrivial solution.

Proof. For prime p, consider the multiplicative group \mathbb{Z}_p^* . Let g be a generator of \mathbb{Z}_p^* . Then $\forall x \in \mathbb{Z}_p^*$, there exists exactly one pair of integers (i,j) s.t. $0 \le j \le m-1, \ 0 \le im+j \le p-2$ and $x = g^{im+j} \pmod{p}$, since \mathbb{Z}_p^* is a cyclic of order p-1.

We then can define a function $c: \mathbb{Z}_p^* \to \{0, 1, ..., m-1\}$ by letting c(x) = j, where $x = g^{im+j}$ and $0 \le j \le m-1$.

By Schur's Theorem, choose p(m)=N(m), so for any $p\geq p(m)$, the function c has $x,y,z\in\mathbb{Z}_p^*$ s.t. c(x)=c(y)=c(z) and x+y=z. Let $x=g^{i_1m+j},\ y=g^{i_2m+j},\ z=g^{i_3m+j}\ (\mathrm{mod}\ p)$.

Then x + y = z.

$$\Rightarrow g^{i_1m+j} + g^{i_2m+j} = g^{i_3m+j} \pmod{p}$$

$$\Rightarrow g^{i_1m} + g^{i_2m} = g^{i_3m} \pmod{p}.$$
(1)

Let $\alpha = g^{i_1}, \ \beta = g^{i_2}, \ \gamma = g^{i_3},$

$$\Rightarrow \alpha^m + \beta^m = \gamma^m \pmod{p}.$$

Remark. Schur's Theorem holds in \mathbb{Z} , but we need to restrict the calculation into a multiplication cyclic group when deducing equation (1).

Theorem 5. Let n, s satisfy $\binom{n}{s} \cdot 2^{1-\binom{s}{2}} < 1$. Then R(s, s) > n.

Proof. We need to construct a 2-edge-coloring of K_n which has NO monochromatic K_s .