Combinatorics, 2016 Fall, USTC

Week 12, November 24

Ramsey's Theorem

Recall:

- $R(s, t) \leq\binom{ s+t-2}{s-1}$, s.t ≥ 2.
- $R(s, t) \leq R(s-1, t)+R(s, t-1)$.

Theorem 1. If for some (s, t), the numbers $R(s-1, t)$ and $R(s, t-1)$ are even, then

$$
R(s, t) \leq R(s-1, t)+R(s, t-1)-1 .
$$

Proof. Let $n=R(s-1, t)+R(s, t-1)-1$. So n is odd. Consider any 2-edge-coloring of K_{n}. For any vertex x, define $B x=\{y: x y$ is blue. $\}$ and $R x=\{y: x y$ is red. $\}$.

If $\exists v$ s.t. $|B v| \geq R(s-1, t)$ or $|R v| \geq R(s, t-1)$, then by the definition of Ramsey number, we can find a blue K_{s} or a red K_{t}. Thus, we may assume, for any vertex $v,|B v| \leq R(s-1, t)-1$ and $|R v| \leq R(s, t-1)-1$.

But $n-1=|B v|+|R v| \leq R(s-1, t)+R(s, t-1)-2=n-1$. This implies that for each $v,|B v|=R(s-1, t)-1$ is odd. This shows that the graph G consisting of all blue edges has odd number of vertices, where each vertex is of odd degree in G. But this contradicts the Handshaking Lemma.

Definition 2. For any $k \geq 2$ and integers $s_{1}, s_{2}, \ldots, s_{k} \geq 2$, the Ramsey number $R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is the least integer N such that any k-edge-coloring of K_{N} has a clique $K_{s_{i}}$ in color i, for some $i \in[k]$.

Homework. $R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)<+\infty$.
Theorem 3 (Schur's Theorem). For $k \geq 2$, there exists some integer $N=$ $N(k)$ such that any coloring $c:[N] \rightarrow[k]$ contains $x, y, z \in[N]$ satisfying that $c(x)=c(y)=c(z)$ and $x+y=z$.

Proof. Let $N=R_{k}(3,3, \ldots, 3)$. Define a k-dege-coloring of K_{N}. From the coloring c as following: $\forall i, j \in[N]$, define the color of $i j$ to be $c(|i-j|)$. By the choice of N, we see that there exists a monochromatic K_{3}, say $i j l$, where $i<j<l$. Let $x=j-i, y=l-j$, and $z=l-i$. Then $c(x)=c(y)=c(z)$ and $x+y=z$.

Using this theorem, Schur proved that Fermat last Theorem holds in \mathbb{Z}_{p} for sufficiently large prime p.

Theorem 4. For any integer $m \geq 1$, there is a prime $p(m)$ s.t. for any prime $p \geq p(m), x^{m}+y^{m}=z^{m}(\bmod p)$ has a nontrivial solution.

Proof. For prime p, consider the multiplicative group \mathbb{Z}_{p}^{*}. Let g be a generator of \mathbb{Z}_{p}^{*}. Then $\forall x \in \mathbb{Z}_{p}^{*}$, there exists exactly one pair of integers (i, j) s.t. $0 \leq j \leq m-1,0 \leq i m+j \leq p-2$ and $x=g^{i m+j}(\bmod p)$, since \mathbb{Z}_{p}^{*} is a cyclic of order $p-1$.

We then can define a function $c: \mathbb{Z}_{p}^{*} \rightarrow\{0,1, \ldots, m-1\}$ by letting $c(x)=j$, where $x=g^{i m+j}$ and $0 \leq j \leq m-1$.

By Schur's Theorem, choose $p(m)=N(m)$, so for any $p \geq p(m)$, the function c has $x, y, z \in \mathbb{Z}_{p}^{*}$ s.t. $c(x)=c(y)=c(z)$ and $x+y=z$. Let $x=g^{i_{1} m+j}, y=g^{i_{2} m+j}, z=g^{i_{3} m+j}(\bmod p)$.

Then $x+y=z$.

$$
\begin{gather*}
\Rightarrow g^{i_{1} m+j}+g^{i_{2} m+j}=g^{i_{3} m+j} \quad(\bmod p) \tag{1}\\
\Rightarrow g^{i_{1} m}+g^{i_{2} m}=g^{i_{3} m} \quad(\bmod p) .
\end{gather*}
$$

Let $\alpha=g^{i_{1}}, \beta=g^{i_{2}}, \gamma=g^{i_{3}}$,

$$
\Rightarrow \alpha^{m}+\beta^{m}=\gamma^{m} \quad(\bmod p)
$$

Remark. Schur's Theorem holds in \mathbb{Z}, but we need to restrict the calculation into a multiplication cyclic group when deducing equation (1).

Theorem 5. Let n, s satisfy $\binom{n}{s} \cdot 2^{1-\binom{s}{2}}<1$. Then $R(s, s)>n$.
Proof. We need to construct a 2-edge-coloring of K_{n} which has NO monochro$\operatorname{matic} K_{s}$.
(To be continued.)

