Combinatorics, 2016 Fall, USTC
Week 12, November 24

Ramsey’s Theorem

Recall:

o R(s,t) < (°1']?), st>2.

e R(s,t) < R(s—1,t)+ R(s,t —1).

Theorem 1. If for some (s,t), the numbers R(s — 1,t) and R(s,t — 1) are
even, then

R(s,t) < R(s—1,t) + R(s,t —1) — 1.

Proof. Let n = R(s — 1,t) + R(s,t — 1) — 1. So n is odd. Consider any
2-edge-coloring of K. For any vertex x, define Bx = {y : xy is blue.} and
Rz = {y : xy is red.}.

If Jus.t. |Bv| > R(s—1,t) or |Rv| > R(s,t—1), then by the definition of
Ramsey number, we can find a blue K, or a red K;. Thus, we may assume,
for any vertex v, |Bv| < R(s — 1,t) — 1 and |Rv| < R(s,t — 1) — 1.

But n — 1 = |Bv| + |Rv| < R(s — 1,t) + R(s,t — 1) —2 = n — 1. This
implies that for each v, |Bv| = R(s — 1,f) — 1 is odd. This shows that the
graph G consisting of all blue edges has odd number of vertices, where each
vertex is of odd degree in G. But this contradicts the Handshaking Lemma.

|

Definition 2. For any k£ > 2 and integers si, S, ..., S, > 2, the Ramsey
number Ry(S1, Sa, ..., i) is the least integer N such that any k-edge-coloring

of Ky has a clique Kj, in color 4, for some i € [k].
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Homework. Ry(si, s, ...,s;) < +o0.

Theorem 3 (Schur’s Theorem). For k > 2, there exists some integer N =
N(k) such that any coloring ¢ : [N] — [k] contains x,y,z € [N] satisfying
that c(x) = c(y) = c¢(2) and x +y = z.

Proof. Let N = Ry(3,3,...,3). Define a k-dege-coloring of K. From the
coloring c¢ as following: Vi, 5 € [N], define the color of ij to be ¢(|i — j|). By
the choice of NV, we see that there exists a monochromatic K3, say ijl, where
i<j<l Letx=j—i,y=1—7j,and z =1 —i. Then c(z) = c(y) = c(2)

and x +y = 2. |

Using this theorem, Schur proved that Fermat last Theorem holds in Z,

for sufficiently large prime p.

Theorem 4. For any integer m > 1, there is a prime p(m) s.t. for any

prime p > p(m), ™ 4+ y™ = 2™ (mod p) has a nontrivial solution.

Proof. For prime p, consider the multiplicative group Z;. Let g be a generator
of Zy. Then Vx € Z, there exists exactly one pair of integers (i,j) s.t.
0<j<m-1,0<im+j<p-2andz = g¢g™" (mod p), since Z is a
cyclic of order p — 1.

We then can define a function ¢ : Zy — {0,1, ..., m—1} by letting c(z) = j,
where x = ¢"* and 0 < j < m — 1.

By Schur’s Theorem, choose p(m) = N(m), so for any p > p(m), the
function ¢ has x,y,2 € Z; s.t. c(x) = c(y) = c¢(z) and v +y = 2. Let

x =gty = gmt 2 = g™t (mod p).



Then z +y = z.
= g 4 g = g#mH (mod p) (1)

= """+ g =g"™  (mod p),
Let o :gila p = gi27 Y= gi?,’

=am+ " =+" (mod p).

Remark. Schur’s Theorem holds in Z, but we need to restrict the calculation

into a multiplication cyclic group when deducing equation (1).
Theorem 5. Let n,s satisfy (Z) 21-() < 1. Then R(s,s) > n.

Proof. We need to construct a 2-edge-coloring of K,, which has NO monochro-
matic K.

(To be continued.) |



