
Combinatorics, 2016 Fall, USTC

Week 12, November 24

Ramsey’s Theorem
Recall:

• R(s, t) ≤
(
s+t−2
s−1

)
, s.t ≥ 2.

• R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Theorem 1. If for some (s, t), the numbers R(s − 1, t) and R(s, t − 1) are

even, then

R(s, t) ≤ R(s− 1, t) +R(s, t− 1)− 1.

Proof. Let n = R(s − 1, t) + R(s, t − 1) − 1. So n is odd. Consider any

2-edge-coloring of Kn. For any vertex x, define Bx = {y : xy is blue.} and

Rx = {y : xy is red.}.

If ∃v s.t. |Bv| ≥ R(s−1, t) or |Rv| ≥ R(s, t−1), then by the definition of

Ramsey number, we can find a blue Ks or a red Kt. Thus, we may assume,

for any vertex v, |Bv| ≤ R(s− 1, t)− 1 and |Rv| ≤ R(s, t− 1)− 1.

But n − 1 = |Bv| + |Rv| ≤ R(s − 1, t) + R(s, t − 1) − 2 = n − 1. This

implies that for each v, |Bv| = R(s − 1, t) − 1 is odd. This shows that the

graph G consisting of all blue edges has odd number of vertices, where each

vertex is of odd degree in G. But this contradicts the Handshaking Lemma.

Definition 2. For any k ≥ 2 and integers s1, s2, ..., sk ≥ 2, the Ramsey

number Rk(s1, s2, ..., sk) is the least integer N such that any k-edge-coloring

of KN has a clique Ksi in color i, for some i ∈ [k].
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Homework. Rk(s1, s2, ..., sk) < +∞.

Theorem 3 (Schur’s Theorem). For k ≥ 2, there exists some integer N =

N(k) such that any coloring c : [N ] → [k] contains x, y, z ∈ [N ] satisfying

that c(x) = c(y) = c(z) and x+ y = z.

Proof. Let N = Rk(3, 3, ..., 3). Define a k-dege-coloring of KN . From the

coloring c as following: ∀i, j ∈ [N ], define the color of ij to be c(|i− j|). By

the choice of N , we see that there exists a monochromatic K3, say ijl, where

i < j < l. Let x = j − i, y = l − j, and z = l − i. Then c(x) = c(y) = c(z)

and x+ y = z.

Using this theorem, Schur proved that Fermat last Theorem holds in Zp

for sufficiently large prime p.

Theorem 4. For any integer m ≥ 1, there is a prime p(m) s.t. for any

prime p ≥ p(m), xm + ym = zm (mod p) has a nontrivial solution.

Proof. For prime p, consider the multiplicative group Z∗
p. Let g be a generator

of Z∗
p. Then ∀x ∈ Z∗

p, there exists exactly one pair of integers (i, j) s.t.

0 ≤ j ≤ m − 1, 0 ≤ im + j ≤ p − 2 and x = gim+j (mod p), since Z∗
p is a

cyclic of order p− 1.

We then can define a function c : Z∗
p → {0, 1, ...,m−1} by letting c(x) = j,

where x = gim+j and 0 ≤ j ≤ m− 1.

By Schur’s Theorem, choose p(m) = N(m), so for any p ≥ p(m), the

function c has x, y, z ∈ Z∗
p s.t. c(x) = c(y) = c(z) and x + y = z. Let

x = gi1m+j, y = gi2m+j, z = gi3m+j (mod p).
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Then x+ y = z.

⇒ gi1m+j + gi2m+j = gi3m+j (mod p) (1)

⇒ gi1m + gi2m = gi3m (mod p).

Let α = gi1 , β = gi2 , γ = gi3 ,

⇒ αm + βm = γm (mod p).

Remark. Schur’s Theorem holds in Z, but we need to restrict the calculation

into a multiplication cyclic group when deducing equation (1).

Theorem 5. Let n, s satisfy
(
n
s

)
· 21−(

s
2) < 1. Then R(s, s) > n.

Proof. We need to construct a 2-edge-coloring ofKn which has NOmonochro-

matic Ks.

(To be continued.)
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